题目内容
【题目】如图,在正方形中,点、是边上的两点,且,过作于,分别交、于,,、的延长线相交于.
(1)求证:;
(2)判断的形状,请说明理由.
【答案】(1)见解析;(2)△PQR为等腰三角形,证明过程见解析.
【解析】
(1)可以证明△ADP≌△DCG,即可求证DP=CG.
(2)由(1)的结论可以证明△CEQ≌△CEG,进而证明∠PQR=∠QPR.故△PQR为等腰三角形.
(1)证明:在正方形ABCD中,
AD=CD,∠ADP=∠DCG=90°,
∠CDG+∠ADH=90°,
∵DH⊥AP,∴∠DAH+∠ADH=90°,
∴∠CDG=∠DAH,
∴△ADP≌△DCG,
∴DP=CG.
(2)△PQR为等腰三角形.
证明:∵CQ=DP,
∴CQ=CG,
∵四边形ABCD为正方形,
∴∠QCE=∠GCE,
又∵CE=CE,
∴△CEQ≌△CEG,
∴∠CQE=∠CGE,
∴∠PQR=∠CGE,
∵∠QPR=∠DPA,且(1)中证明△ADP≌△DCG,
∴∠PQR=∠QPR,
所以△PQR为等腰三角形.
练习册系列答案
相关题目