题目内容
【题目】已知△ABC为等边三角形,点D是线段AB上一点(不与A、B重合).将线段CD绕点C逆时针旋转60°得到线段CE.连结DE、BE.
(1)依题意补全图1并判断AD与BE的数量关系.
(2)过点A作AF⊥EB交EB延长线于点F.用等式表示线段EB、DB与AF之间的数量关系并证明.
【答案】(1)补全图形见解析;AD=BE;(2)EB+DB=AF;证明见解析.
【解析】
(1)根据题意补全图形,由等边三角形的性质得出,,由旋转的性质得:,,得出,证明,即可得出结论;
(2)由全等三角形的性质得出,,求出,在中,由三角函数得出,,即可得出结论.
解:(1)补全图形如图1所示,AD=BE,理由如下:
∵△ABC是等边三角形,
∴AB=BC=AC,∠A=∠B=60°,
由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)EB+DB=AF;理由如下:
由(1)得:△ACD≌△BCE,
∴AD=BE,∠CBE=∠CAD=60°,
∴∠ABF=180°﹣∠ABC﹣∠CBE=60°,
∵AF⊥EB,
∴∠AFB=90°,
在Rt△ABF中,=sin60°=,
∴AB=AF=AF,
∵AD+DB=AB,
∴EB+DB=AB,
∴EB+DB=AF.
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.
【题目】为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲、乙两校40名学生成绩的频数分布统计表如下:
成绩x 学校 | |||||
甲 | 4 | 11 | 13 | 10 | 2 |
乙 | 6 | 3 | 15 | 14 | 2 |
(说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)
b.甲校成绩在这一组的是:
70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙两校成绩的平均分、中位数、众数如下:
学校 | 平均分 | 中位数 | 众数 |
甲 | 74.2 | n | 5 |
乙 | 73.5 | 76 | 84 |
根据以上信息,回答下列问题:
(1)写出表中n的值;
(2)在此次测试中,某学生的成绩是74分,在他所属学校排在前20名,由表中数据可知该学生是_____________校的学生(填“甲”或“乙”),理由是__________;
(3)假设乙校800名学生都参加此次测试,估计成绩优秀的学生人数.