题目内容
【题目】近期猪肉价格不断走高,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至7月20日,猪肉价格不断走高,7月20日比年初价格上涨了60%.某市民于某超市今年7月20日购买2.5千克猪肉花100元钱.
(1)问:那么今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克30元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?
(3)7月21日,某市决定投入储备猪肉并规定其在原销售价的基础上下调a%出售,某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格不变情况下,该天的两种猪肉总销量比7月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比7月20日提高了a%,求a的值.
【答案】(1)25元;(2)37元;(3)a的值为20
【解析】
(1)利用单价=总价÷数量可求出7月20日猪肉的单价,设今年年初猪肉的价格为每千克x元,根据年初与7月20日猪肉单价间的关系,可得出关于x的一元一次方程,解之即可得出结论;
(2)设每千克降价y元,则日销售(100+20y)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出y值,再将其较大值代入(40﹣y)中即可求出结论;
(3)设该超市7月20日售出m千克猪肉,根据销售总金额=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.
(1)今年7月20日猪肉的价格=100÷2.5=40(元/千克).
设今年年初猪肉的价格为每千克x元,
依题意,得:(1+60%)x=40,
解得:x=25.
答:今年年初猪肉的价格为每千克25元.
(2)设每千克降价y元,则日销售(100+20y)千克,
依题意,得:(40﹣30﹣y)(100+20y)=1120,
整理,得:y1=2,y2=3,
∵尽可能让顾客优惠,
∴y=3,
∴40﹣y=37.
答:应该每千克定价为37元.
(3)设该超市7月20日售出m千克猪肉,
依题意,得:40(1﹣a%)×(1+a%)m+40×(1+a%)m=(1+a%)×40m,
整理,得:a2﹣20a=0,
解得:a1=0(舍去),a2=20.
答:a的值为20.
【题目】某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在这一组的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年级成绩的平均数、中位数如下:
年级 | 平均数 | 中位数 |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在80分以上(含80分)的有 人;
(2)表中m的值为 ;
(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;
(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
【题目】如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)
通过画图、测量、计算,得到了与的几组值,如下表:
补全表格中的数值: ; ; .
根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;
结合函数图象,直接写出当的面积等于时,的长度约为___ _.