题目内容

【题目】已知二次函数同时满足下列条件:对称轴是;最值是;二次函数的图象与轴有两个交点,其横坐标的平方和为,则的值是(

A. B. C. D.

【答案】C

【解析】

由在x=1时取得最大值15,可设解析式为:y=a(x-1)2+15,只需求出a即可,又与x轴交点横坐标的平方和为15-a,可求出a,所以可求出解析式得到b的值.

解:解法一:∵x轴上点的纵坐标是0,
∴由题可设抛物线与x轴的交点为( 1-t,0),( 1+t,0),其中t>0,
∵两个交点的横坐标的平方和等于15-a即:(1-t)2+(1+t)2=15-a,

可得t=

由顶点为(1,15),
可设解析式为:y=a(x-1)2+15,
将(1-,0)代入解析式,

a=-2a=15(不合题意,舍去)

∴y=-2(x-1)2+15=-2x2+4x+13,
∴b=4;
解法二:∵对称轴是x=1,最值是15,
∴设y=ax2+bx+c=a(x-1)2+15,
∴y=ax2-2ax+15+a,
设方程ax2-2ax+15+a=0的两个根是x1,x2

x1+x2= =2,x1x2=

∵二次函数的图象与x轴有两个交点,其横坐标的平方和为15-a,
(x12+(x22=(x1+x22-2x1x2=15-a,

=15-a,

a2-13a-30=0,
a1=15(不合题意,舍去),a2=-2,
∴y=-2(x-1)2+15=-2x2+4x+13;
∴b=4.
故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网