题目内容
先观察下列等式,然后用你发现的规律解答下列问题.
=1-
;
=
-
;
=
-
将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
(1)计算
+
+
+…+
=______;
(2)探究
+
+
+…+
=______;(用含有n的式子表示)
(3)探究并计算:
+
+
+…+
.
1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
将以上三个等式两边分别相加得:
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
4 |
3 |
4 |
(1)计算
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
(2)探究
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
(3)探究并计算:
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
2007×2009 |
(1)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
(2)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
(3)
+
+
+…+
=
×(1-
+
-
+…+
-
)
=
×(1-
)
=
×
=
.
故答案为:
;
.
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
9 |
1 |
10 |
=1-
1 |
10 |
=
9 |
10 |
(2)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=1-
1 |
n+1 |
=
n |
n+1 |
(3)
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
2007×2009 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2007 |
1 |
2009 |
=
1 |
2 |
1 |
2009 |
=
1 |
2 |
2008 |
2009 |
=
1004 |
2009 |
故答案为:
9 |
10 |
n |
n+1 |
练习册系列答案
相关题目