题目内容
(本题满分12分)
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,
并连结AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为 ;(结果保留)
(3)若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由
(1)略
(2)C(6,2) D(2,0)
(3)相切。证明略
解析:(1)略
(2)C(6,2) D(2,0)
(3)相切。证明略。
第1题2分,第2问6分,第3问4分
练习册系列答案
相关题目
(本题满分12分)
如图,的顶点A、B在二次函数的图像上,又点A、B[来分别在轴和轴上,∠ABO=.
1.(1)求此二次函数的解析式;(4分)
2.
|
点在上述函数图像上,当与相似时,求点的坐标.(8分)