题目内容
【题目】某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.
(1)求图中的a值.
(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.
①求AB所在直线的函数解析式;
②请你直接回答,此人走完全程所用的时间.
【答案】(1)a=8;(2)①s=–3t+14;②t=.
【解析】
(1)根据路程=速度×时间即可求出a值;
(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=8-返回时的速度×时间即可得出AB所在直线的函数解析式;
②令①中的函数关系式中s=0,求出t值即可.
(1)a=4×2=8.
(2)①此人返回的速度为(8–5)÷(1.75–)=3(千米/小时),
AB所在直线的函数解析式为s=8–3(t–2)=–3t+14.
②当s=–3t+14=0时,t=.
答:此人走完全程所用的时间为小时.
练习册系列答案
相关题目
【题目】某商场计划购进甲、乙两种商品共件,这两种商品的进价、售价如表所示:
进价(元/件) | 售价(元/件) | |
甲种商品 | ||
乙种商品 |
设购进甲种商品(,且为整数)件,售完此两种商品总利润为元.
(1)该商场计划最多投入元用于购进这两种商品共件,求至少购进甲种商品多少件?
(2)求与的函数关系式;
(3)若售完这些商品,商场可获得的最大利润是__________元.