题目内容
【题目】在等边△ABC中,AB=5,点D是AB上的定点,点P是BC上的动点,DP绕点D逆时针旋转60°恰好落在AC上,已知BD=2,则此时DP=_____.
【答案】
【解析】
如图,连接PP',过点D作DE⊥BC,由旋转的性质可证△DP'P是等边三角形,由“AAS”可证△BDP≌△CPP',可得BD=CP=2,可求BP=3,由直角三角形的性质和勾股定理可求DP的长.
解:如图,连接PP',过点D作DE⊥BC,
∵DP绕点D逆时针旋转60°,
∴DP=DP',∠PDP'=60°,
∴△DP'P是等边三角形,
∴DP=PP',∠DPP'=60°,
∵△ABC是等边三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵∠BPP'=∠C+∠PP'C=∠BPD+∠DPP',
∴∠PP'C=∠BPD,且DP=PP',∠B=∠C,
∴△BDP≌△CPP'(AAS)
∴BD=CP=2,
∴BP=3,
∵∠B=60°,BD=2,DE⊥BC,
∴BE=1,,
∴PE=2,
∴,
故答案为.
练习册系列答案
相关题目