题目内容
【题目】试用举反例的方法说明下列命题是假命题.
举例:如果ab<0,那么a+b<0
反例:设a=4,b=﹣3,ab=4×(﹣3)=﹣12<0,而a+b=4+(﹣3)=1>0
所以,这个命题是假命题.
(1)如果a+b>0,那么ab>0;反例:
(2)如果a是无理数,b是无理数,那么a+b是无理数.反例:
(3)两个三角形中,两边及其中一边的对角对应相等,则这两个三角形全等.反例:
(画出图形,并加以说明)
【答案】解:(1)取a=2,b=﹣1,则a+b=1>0,但ab=﹣2<0.所以此命题是假命题.
(2)取a=1+,b=1﹣,a、b均为无理数.但a+b=2是有理数,所以此命题是假命题.
(3)如图所示,在△ABC与△ABD中,AB=AB,AD=AC,∠ABD=∠ABC,但△ABC与△ABD显然不全等.
所以此命题是假命题.
【解析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.
(2)可利用平方差公式找这样的无理数,比如1± , 两数相加就是有理数.
(3)此题主要是利用全等三角形的判定来证明,在这里注意,没有边边角定理.
【考点精析】掌握反证法是解答本题的根本,需要知道先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计:当很大时,摸到白球的频率将会接近 .(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)试估算盒子里黑、白两种颜色的球各有多少只?