题目内容
【题目】如图,在△ABC中,D,E分别是AB,AC上的点,BE与CD交与点O,给出下列四个条件:①∠DBO=∠ECO,②∠BDO=∠CEO,③BD=CE,④OB=OC.
(1)从上述四个条件中,任选两个为条件,可以判定△ABC是等腰三角形?写出所有可能的情况.
(2)选择(1)中的某一种情形,进行说明.
【答案】(1)①③,①④,②③和②④;(2)以①④为条件,理由见解析.
【解析】
(1)要证ABC是等腰三角形,就要证∠ABC=∠ACB,根据已知条件即可找到证明∠ABC=∠ACB的组合;
(2)可利用△DOB与△EOC全等,得出OC=OB,再得出∠OCB与∠OBC相等,就能证明∠ABC与∠ACB相等.
(1)①③,①④,②③和②④;
(2)以①④为条件,理由:
∵OB=OC,
∴∠OBC=∠OCB.
又∵∠DBO=∠ECO,
∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.
练习册系列答案
相关题目