题目内容
【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE、CF.
(1)求证:DE=CF;
(2)在(1)条件下,如图2,过点E作BG⊥DE,且EG=DE,连接FG,试判断:FG与CE的数量关系和位置关系?给出证明.
(3)如图3,若点E、F分别是CB、BA的延长线上的点,其他条件不变,(2)中结论是否仍然成立?请直接写出你的判断.
【答案】
(1)证明:∵四边形ABCD是正方形,
∴BC=CD,∠ABC=∠DCE=90°,
在△CBF和△DCE中, ,
∴△CBF≌△DCE(SAS),
∴CF=DE;
(2)解:结论:GF=EC,GF∥EC,
理由:由(1)知,∠BCF=∠CDE,
∵∠BCF+∠DCF=90°,
∴∠CDE+∠DCF=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四边形EGFC是平行四边形,
∴GF=EC,GF∥EC;
(3)解:结论仍然成立,GF=EC,GF∥EC,
理由:由(1)知,∠BCF=∠CDE,
∵∠BCF+∠DCF=90°,
∴∠CDE+∠DCF=90°,
∴CF⊥DE,
∵GE⊥DE,
∴EG∥CF,
∵EG=DE,CF=DE,
∴EG=CF,
∴四边形EGFC是平行四边形,
∴GF=EC,GF∥EC.
【解析】(1)由正方形的性质得出BC=CD,∠ABC=∠DCE=90°,进而判断出△CBF≌△DCE(SAS),即可得出结论;(2)先判断出CF⊥DE,进而判断出EG∥CF,即可判断出四边形EGFC是平行四边形,即可得出结论;(3)同(1)的方法即可得出结论.
【考点精析】本题主要考查了平行四边形的判定与性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.