题目内容
【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.
证明:∵ ,
∴∠CDA=90°,∠DAB=90° ( ).
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴ ( ),
∴DF∥AE ( ).
【答案】CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.
【解析】
先根据垂直的定义,得到,,再根据等角的余角相等,得出,最后根据内错角相等,两直线平行进行判定即可.
证明:∵CD⊥DA,DA⊥AB,
∴∠CDA=90°,∠DAB=90°,(垂直定义)
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴∠3=∠4,(等角的余角相等)
∴DF∥AE.(内错角相等,两直线平行)
练习册系列答案
相关题目