题目内容
已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.
由抛物线经过A(-2,-3)、B(3,2)两点可得b=1-a,c=-(1+6a)
∴MN=丨x1-x2丨=|
|=|±
|=
=
.
当a=-1时,MN最小=2
此时,b=2,c=5,
∴函数的解析式为:y=-x2+2x+5.
∴M(1-
,0),N(1+
,0),
此时,四边形AMBN的面积S=
MN•(|yA|+|yB|)=
×2
×(3+2)=5
.
∴MN=丨x1-x2丨=|
| ||
a |
|
(
|
(
|
当a=-1时,MN最小=2
6 |
此时,b=2,c=5,
∴函数的解析式为:y=-x2+2x+5.
∴M(1-
6 |
6 |
此时,四边形AMBN的面积S=
1 |
2 |
1 |
2 |
6 |
6 |
练习册系列答案
相关题目