ÌâÄ¿ÄÚÈÝ
Ò»¼ÒµçÄÔ¹«Ë¾ÍƳöÒ»¿îÐÂÐ͵çÄÔ£¬Í¶·ÅÊг¡ÒÔÀ´£¬Ç°Á½¸öÔµÄÀûÈóÇé¿öÈçͼËùʾ£¬¸Ãͼ¿ÉÒÔ½üËƵؿ´×÷Å×ÎïÏßµÄÒ»²¿·Ö£¬ÆäÖеÚxÔµÄÀûÈóΪyÍòÔª£¬ÍùºóyÓëxÂú×ãµÄ¹Øϵ²»±ä£®Çë½áºÏͼÏó½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÇóÅ×ÎïÏ߶ÔÓ¦µÄ¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©¸Ã¹«Ë¾ÔÚ¾Óª´Ë¿îµçÄԵĹý³ÌÖУ¬µÚ¼¸ÔµÄÀûÈó×î´ó£¿×î´óÀûÈóÊǶàÉÙ£¿
£¨3£©¹«Ë¾´òË㣬´ÓÔÂÀûÈóϽµ¿ªÊ¼£¬Ã¿Ô¶ÔÏÂÔµÄÏúÊÛ¶î½øÐÐÔ¤²â£¬ÈôÏÂÔÂÓë¸ÃÔµÄÀûÈó²î¶î³¬¹ý10ÍòÔª£¬ÔòÏÂÔ¾ÍÍ£Ö¹ÏúÊ۸òúÆ·£¬ÇëÄãÔ¤²â¸Ã²úÆ·³ÖÐøÏúÊÛµÄÔÂÊý£®
£¨1£©ÇóÅ×ÎïÏ߶ÔÓ¦µÄ¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©¸Ã¹«Ë¾ÔÚ¾Óª´Ë¿îµçÄԵĹý³ÌÖУ¬µÚ¼¸ÔµÄÀûÈó×î´ó£¿×î´óÀûÈóÊǶàÉÙ£¿
£¨3£©¹«Ë¾´òË㣬´ÓÔÂÀûÈóϽµ¿ªÊ¼£¬Ã¿Ô¶ÔÏÂÔµÄÏúÊÛ¶î½øÐÐÔ¤²â£¬ÈôÏÂÔÂÓë¸ÃÔµÄÀûÈó²î¶î³¬¹ý10ÍòÔª£¬ÔòÏÂÔ¾ÍÍ£Ö¹ÏúÊ۸òúÆ·£¬ÇëÄãÔ¤²â¸Ã²úÆ·³ÖÐøÏúÊÛµÄÔÂÊý£®
£¨1£©¡ß½áºÏ¶þ´Îº¯ÊýͼÏóµÃ³öͼÏóÉϵĵãÓУº
£¨1£¬13£©£¬£¨2£¬24£©£¬£¨0£¬0£©
´úÈëy=ax2+bx+cµÃ£º
½âµÃ£º
ËùÒÔ½âÎöʽΪ£ºy=-x2+14x
£¨2£©¡ßy=-x2+14x=-£¨x-7£©2+49
´ð£ºµÚ7ÔµÄÀûÈó×î´ó£¬×î´óÀûÈóÊÇ49ÍòÔª£®
£¨3£©ÉèµÚxÔµÄÏÂÔÂÓë¸ÃÔµÄÀûÈó²î¶î³¬¹ý10ÍòÔª£¬
ÓÉÒÑÖªµÃ£¬-x2+14x+£¨x+1£©2-14£¨x+1£©£¾10
2x-13£¾10£¬x£¾11.5£¬µ±x=11ʱ£¬y=33£»
µ±x=12ʱ£¬y=24£»µ±x=13ʱ£¬y=13£»
´ð£ºÔ¤²â¸Ã²úÆ·³ÖÐøÏúÊÛµÄʱ¼äÊÇ12¸öÔ£®
£¨1£¬13£©£¬£¨2£¬24£©£¬£¨0£¬0£©
´úÈëy=ax2+bx+cµÃ£º
|
½âµÃ£º
|
ËùÒÔ½âÎöʽΪ£ºy=-x2+14x
£¨2£©¡ßy=-x2+14x=-£¨x-7£©2+49
´ð£ºµÚ7ÔµÄÀûÈó×î´ó£¬×î´óÀûÈóÊÇ49ÍòÔª£®
£¨3£©ÉèµÚxÔµÄÏÂÔÂÓë¸ÃÔµÄÀûÈó²î¶î³¬¹ý10ÍòÔª£¬
ÓÉÒÑÖªµÃ£¬-x2+14x+£¨x+1£©2-14£¨x+1£©£¾10
2x-13£¾10£¬x£¾11.5£¬µ±x=11ʱ£¬y=33£»
µ±x=12ʱ£¬y=24£»µ±x=13ʱ£¬y=13£»
´ð£ºÔ¤²â¸Ã²úÆ·³ÖÐøÏúÊÛµÄʱ¼äÊÇ12¸öÔ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿