题目内容
【题目】对于平面直角坐标系中的任意两点P1(x1 , y1),P2(x2 , y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的直角距离,记作d(P1 , P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0 , y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0 , Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.
【答案】
(1)
解:由题意,得|x|+|y|=1,
∵d(O,P)=1,O(0,0),P(x,y)
∴d(0,P)=|x|+|y|
∴|x|+|y|=1
①x≥0,y≥0
∴x+y=1
y=1﹣x
②x≤0,y≤0
∴﹣x﹣y=1
y=﹣x﹣1
③x≥0,y≤0
∴x﹣y=1
y=x﹣1
④x≤0,y≥0
∴﹣x+y=1
y=1+x
将四个函数关系式表示在数轴上,所有符合条件的点P组成的图形如图所示:
(2)
解:∵d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,
又∵x可取一切实数,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.
∴点M(2,1)到直线y=x+2的直角距离为3
【解析】(1)根据新的运算规则知|x|+|y|=1,据此可以画出符合题意的图形;(2)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣1|=|x﹣2|+|x+2﹣1|=|x﹣2|+|x+1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x+1|表示数轴上实数x所对应的点到数2和﹣1所对应的点的距离之和,其最小值为3.
【考点精析】利用绝对值对题目进行判断即可得到答案,需要熟知正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离.
【题目】初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:
打字数/个 | 50 | 51 | 59 | 62 | 64 | 66 | 69 |
人数 | 1 | 2 | 8 | 11 | 5 |
将这些数据按组距5(个字)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次打字成绩的众数是个,平均数是个.