题目内容
把两个全等的等腰直角三角板△ABC和△EFG(其直角边长均为4)叠放在一起(如图1),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针方向旋转(旋转角满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图2).在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论.
解:在上述旋转过程中,BH=CK,四边形CHGK的面积不变.
证明:连接CG,
∵△ABC为等腰直角三角形,G(O)为其斜边中点,
∴CG=BG,CG⊥AB,且S△BCG=S△ABC.
∴∠ACG=∠B=45°.
∵∠BGH与∠CGK均为旋转角,
∴∠BGH=∠CGK.
∴△BGH≌△CGK.
∴BH=CK,
S△BGH=S△CGK.
∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△BCG=S△ABC=××4×4=4.
即:旋转过程中,BH=CK,S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化.
证明:连接CG,
∵△ABC为等腰直角三角形,G(O)为其斜边中点,
∴CG=BG,CG⊥AB,且S△BCG=S△ABC.
∴∠ACG=∠B=45°.
∵∠BGH与∠CGK均为旋转角,
∴∠BGH=∠CGK.
∴△BGH≌△CGK.
∴BH=CK,
S△BGH=S△CGK.
∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△BCG=S△ABC=××4×4=4.
即:旋转过程中,BH=CK,S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化.
练习册系列答案
相关题目