题目内容
【题目】已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 , 则点A3到x轴的距离是( )
A.
B.
C.
D.
【答案】D
【解析】解:过小正方形的一个顶点W作FQ⊥x轴于点Q,过点A3F⊥FQ于点F, ∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 ,
∴∠B3C3 E4=60°,∠D1C1E1=30°,∠E2B2C2=30°,
∴D1E1= D1C1= ,
∴D1E1=B2E2= ,
∴cos30°= = ,
解得:B2C2= ,
∴B3E4= ,
cos30°= ,
解得:B3C3= ,
则WC3= ,
根据题意得出:∠WC3 Q=30°,∠C3 WQ=60°,∠A3 WF=30°,
∴WQ= × = ,
FW=WA3cos30°= × = ,
则点A3到x轴的距离是:FW+WQ= + = ,
故选:D.
【考点精析】关于本题考查的正方形的性质和解直角三角形,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.
练习册系列答案
相关题目