题目内容
【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x.
(1)如图1,若AB∥ON,则∠ABO的度数是;
(2)如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(3)如图3,若AB⊥OM,则是否存在这样的x值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)
【答案】
(1)40°
(2)
解:如答图1,
∵∠MON=80°,且OE平分∠MON,
∴∠1=∠2=40°,
又∵AB∥ON,
∴∠3=∠1=40°,
∵∠BAD=∠ABD,
∴∠BAD=40°
∴∠ADO=80°,
∴∠OAC=60°,
即x=60°
(3)
解:存在这样的x,
①如答图2,
当点D在线段OB上时,
若∠BAD=∠ABD,则x=40°;
若∠BAD=∠BDA,则x=25°;
若∠ADB=∠ABD,则x=10°.
②如图3,
当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,
所以只有∠BAD=∠BDA,此时x=130°,C不在ON上,舍去;
综上可知,存在这样的x的值,使得△ADB中有两个相等的角,
且x=10°、25°、40°
【解析】解:(1)如图1∵∠MON=80°,OE平分∠MON,
∴∠AOB=∠BON=40°,
∵AB∥ON,
∴∠ABO=∠BON=40°
故答案是:40°;
(1)由OE平分∠MON得∠AOB=∠BON=40°;再由AB∥ON,得∠ABO=∠BON=40°。
(2)由∠MON=80°,且OE平分∠MON得∠1=∠2=40°;再由AB∥ON,得∠3=∠1=40°,再依据等量代换得到∠OAC=60°,即x=60°。
(3)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况,根据三角形的内角和求得x的值。
【题目】某公司员工的月工资统计表如下,这个公司员工工资的中位数为( )
月工资/元 | 9000 | 8000 | 7000 | 6000 | 5000 | 4000 |
人数 | 1 | 2 | 5 | 12 | 30 | 10 |
A. 7000B. 6000C. 5000D. 6500