题目内容

【题目】已知∠AOB=30°,P是OA上的一点,OP=24cm,以r为半径作⊙P.
(1)若r=12cm,试判断⊙P与OB位置关系;
(2)若⊙P与OB相离,试求出r需满足的条件.

【答案】
(1)解:过点P作PC⊥OB,垂足为C,

则∠OCP=90°.

∵∠AOB=30°,OP=24cm,

∴PC= OP=12cm.

当r=12cm时,r=PC,

∴⊙P与OB相切,

即⊙P与OB位置关系是相切.


(2)当⊙P与OB相离时,r<PC,

∴r需满足的条件是:0cm<r<12cm.


【解析】(1)过点P作PC⊥OB,垂足为C根据含30度角的直角三角形性质求出PC,得出PC=r,则得出⊙P与OB位置关系是相切;(2)根据相切时半径=12,再根据当r<d时相离,即可求出答案.
【考点精析】本题主要考查了直线与圆的三种位置关系的相关知识点,需要掌握直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网