题目内容

【题目】已知:如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点H,G,连接DH,BG.

(1)求证:△AEH≌△CFG;

(2)连接BE,若BE=DE,则四边形BGDH是什么特殊四边形?请说明理由.

【答案】(1)证明见解析(2)证明见解析

【解析】分析: (1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAH=∠FCG,从而利用ASA可作出证明;

(2)根据平行四边形的性质及(1)的结论可得BH∥DG,BH=DG,则由有一组对边平行且相等的四边形是平行四边形证明四边形BHDG是平行四边形,再证明BH=DH即可得到四边形BHDG是菱形

详解:

(1)四边形ABCD是平行四边形,

∴∠DAB=BCD,

∴∠EAH=FCG,

又∵ADBC,

∴∠E=F.

∵在△AEH与△CFG中,

∴△AEH≌△CFG(ASA);

(2)连接BE,∵四边形ABCD是平行四边形,

ABCDAB=CD,

又由(1)得AH=CG,AEH=F,AE=CF,

BH∥DG,BH=DG,,

∴四边形BHDG是平行四边形,

AE=CF,AD=BC,

DE=BF,

BE=DE,

BE=BF,

∴∠BEF=F,

∵∠AEH=F,

∴∠BEF=DEF,

在△BEH和△DEH中,

BH=DH,

∵四边形BHDG是平行四边形,

∴四边形BHDG是菱形.

点睛: 本题主要考查了平行四边形的性质、菱形的判定以及全等三角形的判定与性质,解题的关键是熟练掌握ASASAS证明两个三角形的判定以及菱形的判定定理,此题有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网