题目内容

【题目】已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC,

从以上5个条件中任选2个条件为一组,能判定四边形ABCD是平行四边形的有(   )组.

A. 4 B. 5 C. 6 D. 7

【答案】C

【解析】分析:根据平行四边形的判定来进行选择.①两组对边分别平行的四边形是平行四边形;②两组对角分别平行的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.

详解共有6组可能:①②;①③;①④;①⑤;②⑤;④⑤.
选择①与②:∵AB∥CD,
∴∠BAO=∠DCO,∠ABO=∠CDO,
在△AOB与△COD中,


∴△AOB≌△COD,
∴AB=CD,
∴四边形ABCD为平行四边形.

①与③(根据一组对边平行且相等)
①与④:∵∠BAD=∠DCB
∴AD∥BC
又AB∥DC
根据两组对边分别平行可推出四边形ABCD为平行四边形.
①与⑤,根据定义,两组对边分别平行的四边形是平行四边形;

②与⑤:∵AD∥BC
OA=OC
∴△AOD≌△COB
故AD=BC,四边形ABCD为平行四边形.
④与⑤:根据两组对边分别平行可推出四边形ABCD为平行四边形.

共有6种可能.

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网