题目内容
如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长.
连接DC,如图,
∵∠ADC=∠ABC,
而∠ABC=∠CAD,
∴∠ADC=∠CAD,
∴AC=CD,
又∵AD是直径,
∴∠ACD=90°(直径所对的圆周角是直角),
在Rt△ACD中,
∴AC2+CD2=AD2,
即2AC2=36,AC2=18,
AC=3
(cm).
故答案为:3
cm.
∵∠ADC=∠ABC,
而∠ABC=∠CAD,
∴∠ADC=∠CAD,
∴AC=CD,
又∵AD是直径,
∴∠ACD=90°(直径所对的圆周角是直角),
在Rt△ACD中,
∴AC2+CD2=AD2,
即2AC2=36,AC2=18,
AC=3
2 |
故答案为:3
2 |
练习册系列答案
相关题目