题目内容
【题目】如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F. N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有( )
A. 1个B. 2个
C. 3个D. 4个
【答案】B
【解析】
连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,
而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).
连接DE.
∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,
∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,
∴点A. B. C. D. E都在以AC为直径的圆上,
∵AB=CD,
∴弧AB=弧CD,
∴∠AEB=∠CED,
∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,
∴BE⊥ED,故(1)正确;
∵点A. B. C. D. E都在以AC为直径的圆上,
∴∠AEF=∠CED,∠EAF=∠ECD,
又∵△ACE为等腰直角三角形,
∴AE=CE,
在△AEF和CED中,
,
∴△AEF≌△CED,
∴AF=CD,
而CD=AB,
∴AB=AF,即(2)正确;
∴∠ABF=∠AFB=45°,
∴∠EMC=∠MCB+45°,
而∠ECM=∠NCM+45°,
∵CM平分∠ACB交BN于M,
∴∠EMC=∠ECM,
∴EC=EM,
∴EM=EA,即(3)正确;
∵AB=AF,∠BAD=90°,EM=EA,
∴∠ABF=∠CBF=45°,∠EAM=∠AME,
∵△AEC是等腰直角三角形,
∴∠EAC=45°,
∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,
∴∠BAM=∠NAM,∴(4)正确;
故选D.