题目内容

【题目】在△ABC中,AB=15cm,AC=13cm,高AD=12cm.求△ABC的面积.

【答案】解:(1)如图1,锐角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ACD中AB=13,AD=12,
由勾股定理得
CD2=AC2﹣AD2=132﹣122=25,
∴C=5,
在Rt△ABD中,AB=15,AD=12,
由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC的长为BD+DC=9+5=14,
△ABC的面积: ×BC×AD= ×14×12=84;
2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12
在Rt△ACD中,AC=13,AD=12,由勾股定理得
CD2=AC2﹣AD2=132﹣122=25,
∴CD=5,
在Rt△ABD中,AB=15,AD=12,由勾股定理得
BD2=AB2﹣AD2=152﹣122=81,
∴BD=9,
∴BC=DB﹣CD=9﹣5=4.
△ABC的面积: ×BC×AD= ×4×12=24;综上所述:△ABC的面积为84cm2或24cm2


【解析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD,分别计算出CD的长,再利用三角形的面积公式计算出面积.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网