题目内容

【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

【答案】
(1)解:当t=1时,AP=BQ=1,BP=AC=3,

又∵∠A=∠B=90°,

在△ACP和△BPQ中,

∴△ACP≌△BPQ(SAS).

∴∠ACP=∠BPQ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°.

∴∠CPQ=90°,

即线段PC与线段PQ垂直


(2)解:①若△ACP≌△BPQ,

则AC=BP,AP=BQ,

解得

②若△ACP≌△BQP,

则AC=BQ,AP=BP,

解得

综上所述,存在

使得△ACP与△BPQ全等


【解析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网