题目内容
【题目】如图,正方形ABCD的边长为6,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是边AB上一动点,连接PD,PE,则PD+PE的最小值为_____.
【答案】
【解析】
根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.
解:∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABE+∠CBE=90°,
∵∠ABE=∠BCE,
∴∠BCE+∠CBE=90°,
∴∠BEC=90°,
∴点E在以BC为直径的半圆上移动,
如图,设BC的中点为O,
作正方形ABCD关于直线AB对称的正方形AFGB,
则点D的对应点是F,
连接FO交AB于P,交半圆O于E,
则线段EF的长即为PD+PE的长度最小值,
∵∠G=90°,FG=BG=AB=6,
∴OG=9,
∴OF==,
∴EF=,
故PD+PE的长度最小值为,
故答案为:.
练习册系列答案
相关题目