题目内容
【题目】如图1,在锐角△ABC中,AB=5,tanC=3,BD⊥AC于点D,BD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点P作PE∥AC交边BC于点E,以PE为边作Rt△PEF,使∠EPF=90°,点F在点P的下方,且EF∥AB.设△PEF与△ABD重叠部分图形的面积为S(平方单位)(S>0),点P的运动时间为t(秒)
(t>0).
(1)求线段AC的长.
(2)当△PEF与△ABD重叠部分图形为四边形时,求S与t之间的函数关系式,并写出t的取值范围.
(3)若边EF所在直线与边AC交于点Q,连结PQ,如图2,直接写出△ABC的某一顶点到P、Q两点距离相等时t的值.
【答案】(1)5(2)S=(5﹣t)2(3)综上所述,t=s或s或s时,满足题目要求
【解析】分析: (1)在Rt△ABD中,利用勾股定理求出AD,在Rt△BDC中,求出CD即可.
(2)分2种情形求解:如图1中,当0<t≤1时,重叠部分是四边形PMDN.如图2中,当≤t<5时,重叠部分是四边形PNMF.
(3)如图5中,当PQ的垂直平分线经过当A时.根据PE=PA,可得t=5-t解决问题.如图6中,当PQ的垂直平分线经过点B时,作EN⊥AC于N,EP交BD于M.在Rt△BQD中,根据BQ2=QD2+BD2,列出方程即可解决问题.
详解:
(1)在Rt△ABD中,∠BDA=90°,AB=5,BD=3,
∴AD===4,
在Rt△BCD中,∠BDC=90°,BD=3,tanc=3,∴CD===1,
∴AC=AD+CD=4+1=5.
(2)如图1中,当0<t≤1时,重叠部分是四边形PMDN.
易知PA=t,AM=t,PM=t,DM=4﹣t,
∴S=t(4﹣t)=﹣t2+t.
如图2中,当≤t<5时,重叠部分是四边形PNMF.
∵AB=5,AC=AD+CD=4+1=5,
∴AC=AB,
易证PB=PE=5﹣t,PF=(5﹣t),PN=(5﹣t),
S=(5﹣t)(5﹣t)﹣(5﹣t)(5﹣t)=(5﹣t)2.
(3)如图3中,当A到P、Q距离相等时.
易知四边形APEQ时菱形,∴PE=PA,即t=5﹣t,∴t=.
如图4中,当B到P、Q距离相等时,作EN⊥AC于N,EP交BD于M.
易知四边形PENG是矩形,四边形DMEN是矩形,∴PG=EN=t,EM=DN=PE﹣PM=(5﹣t),
QN=EN=t,∴QD=4﹣(5﹣t)=t﹣1,在Rt△BQD中,∵BQ2=QD2+BD2,
∴(5﹣t)2=32+(t﹣1)2,∴t=.
如图5中,当C到P、Q距离相等时,作PM⊥AC与M,连接PC.
由PC=CQ,可得:(t)2+(5﹣t)2=t2,解得t=
综上所述,t=s或s或s时,满足题目要求.
点睛: 本题考查三角形综合题、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.