题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=8,BC=6.CD⊥AB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ=2,PN=1,点Q在点P的左侧,MN在PQ的下分,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t>0),矩形PQMN与△ACD的重叠部分图形面积为S(平方单位).
(1)求线段CD的长;
(2)当矩形PQMN与线段CD有公共点时,求t的取值范围;
(3)当点P在线段AD上运动时,求S与t的函数关系式.
【答案】(1)CD=;(2)≤t≤;(3)当0<t<时,S=;当≤t≤时, S=2;当<t≤时,S=.
【解析】
(1)由勾股定理得出AB=10,由△ABC的面积得出ACBC=ABCD,即可得出CD的长;
(2)分两种情形:①当点N在线段CD上时,如图1所示,利用相似三角形的性质求解即可.②当点Q在线段CD上时,如图2所示,利用相似三角形的性质求解即可;
(3)首先求出点Q落在AC上的运动时间t,再分三种情形:①当0<t<时,重叠部分是矩形PNYH,如图4所示,②当≤t≤时,重合部分是矩形PNMQ,S=PQPN=2,③当<t≤时,如图5中重叠部分是五边形PQMJI,分别求解即可.
解:(1)∵∠ACB=90°,AC=8,BC=6,
∴AB==10,
∵S△ABC=ACBC=ABCD,
∴ACBC=ABCD,即:8×6=10×CD,
∴CD=;
(2)在Rt△ADC中,AD=,BD=ABAD=,
当点N在线段CD上时,如图1所示:
∵矩形PQMN,PQ总保持与AC垂直,
∴PN∥AC,
∴∠NPD=∠CAD,
∵∠PDN=∠ADC,
∴△PDN∽△ADC,
∴,即:,
解得:PD=,
∴t=ADPD=;
当点Q在线段CD上时,如图2所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△DPQ∽△DBC,
∴,即:,
解得:DP=,
∴t=AD+DP=,
∴当矩形PQMN与线段CD有公共点时,t的取值范围为:≤t≤;
(3)当Q在AC上时,如图3所示:
∵PQ总保持与AC垂直,
∴PQ∥BC,△APQ∽△ABC,
∴,即:,
解得:AP=,
当0<t<时,重叠部分是矩形PNYH,如图4所示:
∵PQ∥BC,
∴△APH∽△ABC,
∴,即:,
∴PH=,
∴S=PHPN=;
当≤t≤时,重合部分是矩形PNMQ,S=PQPN=2;
当<t≤时,如图5中重叠部分是五边形PQMJI,
易得△PDI∽△ACB∽△JNI,
∴,即:,
∴PI=(t),
∴,即:,
∴JN=,
S=S矩形PNMQS△JIN=2·()·[1(t)]=.
【题目】一个水果市场某品种苹果的销售方式如下表:
购买苹数量(千克) | 不超过千克部分 | 超过千克的部分 |
每千克的价格(元) | 元 | 元 |
(1)如果小明购买千克的苹果,那么他需要付___________元.
(2)小明分两次共购买千克的苹果,第二次购买的数量多于第一次购买的数量,若他两次共付元,求他两次分别购买苹果的数量.
【题目】无锡某学校准备组织学生及学生家长到南京大学参观体验,为了便于管理,所有人员到南京必须乘坐在同一列动车上;根据报名人数,若都买一等座单程火车票需5032元,若都买二等座单程火车票且花钱最少,则需2970元;已知学生家长人数是教师人数的2倍,无锡到南京的动车票价格(动车学生票只有二等座可以打6折)如下表所示:
运行区间 | 票价 | ||
上车站 | 下车站 | 一等座 | 二等座 |
无锡 | 南京 | 68(元) | 55(元) |
(1)参加参观体验的老师、家长与学生各有多少人?
(2)由于各种原因,二等座火车票单程只能买x张(x小于参加体验的人数),其余的需买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.
(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票的总费用至少是多少钱?最多是多少钱?