题目内容
【题目】如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.
(1)求证:CD=CB;
(2)若∠ACN= a,求∠BDC的大小(用含a的式子表示);
(3)请判断线段PB,PC与PE三者之间的数量关系,并证明你的结论.
【答案】(1)见解析;(2)∠BDC=60°-a;(3)PB=PC+2PE,理由见解析
【解析】
(1)根据条件得到CN是AD的垂直平分线,证明△ABC为等边三角形即可解答.
(2)求出△ABC是等边三角形,转换角度即可解答.
(3) 在PB上截取PF使PF=PC,连接CF,利用三角形全等解答.
(1)证明:∵点A与点D关于CN对称,
∴CN是AD的垂直平分线,
∴CA=CD,
∵△ABC为等边三角形,
∴CB=CA,
∴CD=CB
(2)解:由(1)可知:CA=CD,CN⊥AD,
∴∠ACD=2∠ACN=2α.
∵△ABC是等边三角形,
∴∠ACB=60°,
∴∠BCD=∠ACB+∠ACD=60°+2 .
∵CB=CD,
∴∠BDC=∠DBC= (180°-∠BCD)=60°-α.
(3)解:证明:结论:PB=PC+2PE在PB上截取PF使PF=PC,连接CF.
∵CA=CD,∠ACD=2 ,
∴∠CDA=∠CAD=90°-α,
∵∠BDC=60°-α,
∴∠PDE=∠CDA-∠BDC=30°,
∴在Rt△DPE中,PD=2PE.
∵∠CPF=∠DPE=90°-∠PDE=60°,
∴△CPF是等边三角形,
∴∠CPF=∠CFP=60°,
∴∠BFC=∠DPC=120°,
在△BFC和△DPC中,
∵ ,
∴△BFC≌△DPC.
∴BF=PD=2PE.
∴PB= PF+BF=PC+2PE
练习册系列答案
相关题目