题目内容

【题目】如图ABC,AB=AC,BAC=90°,1=2,CEBDBD的延长线于点E.求证:BD=2CE.

【答案】证明见解析.

【解析】

延长CE、BA交于F,根据角边角定理,证明△BEF≌△BEC,进而得到CF=2CE的关系.再证明∠ACF=∠1,根据角边角定理证明△ACF≌△ABD,得到BD=CF,至此问题得解.

证明:分别延长BA,CE交于点F.

∵BE⊥CE,

∴∠BEF=∠BEC=90°.

又∵∠1=∠2,BE=BE,

∴△BEF≌△BEC(ASA),

∴CE=FE=CF.

∵∠1+∠F=90°,∠ACF+∠F=90°,

∴∠1=∠ACF.又∵AB=AC,∠BAD=∠CAF=90°,

∴△ABD≌△ACF(ASA),

∴BD=CF,

∴BD=2CE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网