题目内容
【题目】甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离与运动时间的函数关系大致如图所示,下列说法中错误的是( ).
A.两人出发1小时后相遇B.赵明阳跑步的速度为
C.王浩月到达目的地时两人相距D.王浩月比赵明阳提前到目的地
【答案】C
【解析】
根据图像可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.
解:由图可知:当时间为0h时,两人相距24km,
即甲乙两地相距24km,
当时间为1h时,甲乙两人之间距离为0,
即此时两人相遇,故A正确;
∵24÷1=24,可得两人的速度和为24km/h,
由于王浩月先到达目的地,故赵明阳全程用了3h,
∴赵明阳的速度为24÷3=8km/h,故B正确;
可知王浩月的速度为24-8=16km/h,
∴王浩月到达目的地时,用了24÷16=h,
此时赵明阳行进的路程为:×8=12km,
即此时两人相距12km,故C错误;
赵明阳到达目的地时,用了3h,
则3-==1.5h,
∴王浩月比赵明阳提前1.5h到目的地,故D正确.
故选C.
【题目】某商店计划一次性购进甲、乙两种商品共件,甲、乙两种商品的进价和售价如下表所示:
甲 | 乙 | |
进价(元/件) | 100 | 80 |
售价(元/件) | 150 | 120 |
设购进甲种商品的数量为件.
(1)设进货成本为元,求与之间的函数解析式;若购进甲种商品的数量不少于件,则最低进货成本是多少元?
(2)若除了进货成本,还要支付运费和销售员工工资共元,为尽快回笼资金,该商店决定对甲种商品进行降价销售,每件甲种商品降价元,乙种商品售价不变,设销售完甲、乙两种商品获得的总利润为元.
①每件甲种商品的利润是 元(用含的代数式表示)
②求关于的函数解析式
③当时,请你根据的取值范围,说明该商店购进甲种商品多少件时,获得的总利润最大.
【题目】如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
M的坐标 | … | … | ||||
P的坐标 | … | … |
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,求点D的纵坐标的取值范围.