题目内容
【题目】如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.
(1)求∠OCA的度数;
(2)若∠COB=3∠AOB,OC=,求图中阴影部分面积(结果保留π和根号).
【答案】(1)30°;(2).
【解析】
试题分析:(1)圆内接四边形性质得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,由OA=OC得到∠OAC=∠OCA=30°;
(2)由∠COB=3∠AOB得到∠AOB=30°,从而有∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.
试题解析:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;
(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=,∴OE=OCtan∠OCE=tan30°==2,
∴S△OEC=OEOC==,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=.
练习册系列答案
相关题目