题目内容
【题目】如图,等边三角形中,D是上一点,连接并将绕点A逆时针旋转120°得到线段,连接交于点F.
(1)当点D为中点,且时,___________;
(2)补全图形,探究线段与之间的数量关系,并证明你的结论.
【答案】(1);(2),证明见详解.
【解析】
(1)作,交CA的延长线于G,根据等边三角形的性质得出∠CAD=30°, AD⊥BC,进而求得BD=CD=1,等边三角形边长为2,易证得△AGE≌△DBA,GE=BC,AG=BD=1, 然后根据平行线分,线段成比例定理求得GF=FC=,即可求得AF;
(2)作,交CA的延长线于G,根据等边三角形的性质得出三角相等,进而求得∠ADB=∠EAG,易证得△AGE≌△DBA,证得GE=BC, AG=BD,然后根据平行线分线段成比例定理求得GF=FC,即可求得AF=CD.
(1)如图所示,作,交CA的延长线于G,
等边三角形中,点D为中点,
在和中,
,
,
,
(2)
如图所示,作交CA延长线于G,
,
,
,
在和中,
即.
练习册系列答案
相关题目