题目内容
【题目】如图所示,小娟玩游戏:一张纸片,第一次将其撕成四个正方形片,手中共有4张纸片,以后每次都将其中一片撕成更小的四个正方形片.如此进行下去,根据上述情况:
(1)当撕10次时,小娟手中共有 张纸;
(2)当小娟撕到第n次时,手中共有S张纸片,请用含n的代数式表示S;
(3)小娟手中能否有2020张纸片?如果能,请算出是第几次撕;如果不能,需说明理由.
(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把数量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,请结合上图计算
【答案】(1)31;(2)S=1+3n;(3)第673次撕,正好是2020张纸片;(4)1-.
【解析】
(1)根据题目中的图形和题意,可以发现手中纸片的个数的变化规律,从而可以写出当撕10次时,小娟手中共有多少张纸片;
(2)根据题目中的图形,可以用含n的代数式表示S;
(3)根据(2)中的关系式,可以计算出小娟手中能否有2020张纸片;
(4)根据题目中的图形,可以写出所求式子的结果.
解:(1)由图可得,
当撕1次时,小娟手中共有:1+3×1=4(张),
当撕2次时,小娟手中共有:1+3×2=7(张),
……
当撕10次时,小娟手中共有:1+3×10=31(张),
故答案为:31;
(2)由图可得,
S=1+3n;
(3)小娟手中能有2020张纸片,
令1+3n=2020,
解得,n=673,
即第673次撕,正好是2020张纸片;
(4)
=…+
=1﹣.
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据:按如下数据段整理、描述这两组数据
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
经统计,表格中m的值是 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .
b可以推断出 学校学生的数学水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
【题目】如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.