题目内容
【题目】如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.
(1)求抛物线的解析式;
(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;
(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;
(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.
【答案】
(1)
解:把点(﹣2,2),(4,5)代入y=ax2+c得 ,解得 ,
所以抛物线解析式为y= x2+1;
(2)
解:BF=BC.
理由如下:
设B(x, x2+1),而F(0,2),
∴BF2=x2+( x2+1﹣2)2=x2+( x2﹣1)2=( x2+1)2,
∴BF= x2+1,
∵BC⊥x轴,
∴BC= x2+1,
∴BF=BC;
(3)
解:如图1,
m为自然数,则点P在F点上方,
∵以B、C、F、P为顶点的四边形是菱形,
∴CB=CF=PF,
而CB=FB,
∴BC=CF=BF,
∴△BCF为等边三角形,
∴∠BCF=60°,
∴∠OCF=30°,
在Rt△OCF中,CF=2OF=4,
∴PF=CF=4,
∴P(0,6),
即自然数m的值为6;
(4)
解:作QE∥y轴交AB于E,如图2,
当k=1时,一次函数解析式为y=x+2,
解方程组 得 或 ,则B(1+ ,3+ ),
设Q(t, t2+1),则E(t,t+2),
∴EQ=t+2﹣( t2+1)=﹣ t2+t+1,
∴S△QBF=S△EQF+S△EQB= (1+ )EQ= (1+ ))(﹣ t2+t+1)=﹣ (t﹣2)2+ +1,
当t=2时,S△QBF有最大值,最大值为 +1,此时Q点坐标为(2,2).
【解析】(1)利用待定系数法求抛物线解析式;(2)设B(x, x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+( x2+1﹣2)2=,再利用配方法可得到BF= x2+1,由于BC= x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组 得B(1+ ,3+ ),设Q(t, t2+1),则E(t,t+2),则EQ=﹣ t2+t+1,则S△QBF=S△EQF+S△EQB= (1+ )EQ= (1+ ))(﹣ t2+t+1),然后根据二次函数的性质解决问题.
【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
运动项目 | 频数(人数) |
羽毛球 | 30 |
篮球 | a |
乒乓球 | 36 |
排球 | b |
足球 | 12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的a= , b=;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;
(3)全校有多少名学生选择参加乒乓球运动?