题目内容
【题目】如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE的形状是什么?说明理由.
【答案】(1)证明见解析;(2)矩形,理由见解析.
【解析】
试题(1)根据矩形的性质求出OA=OD,证出四边形AODE是平行四边形即可;(2)根据菱形的性质求出∠AOD=90°,再证出四边形AODE是平行四边形即可.
试题解析:(1)∵矩形ABCD的对角线相交于点O,
∴AC=BD(矩形对角线相等),OA=OC=AC,OB=OD=BD(矩形对角线互相平分).∴OA=OD .
∵DE∥CA ,AE∥BD,∴四边形AODE是平行四边形(两组对边分别平行的四边形是平行四边形).
∴四边形AODE是菱形(一组邻边相等的平行四边形是菱形).
(2)矩形,理由如下:
∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形.
∵菱形ABCD,∴AC⊥BD. ∴∠AOD=90°.
∴平行四边形AODE是矩形.
练习册系列答案
相关题目