题目内容
【题目】 如图,已知△ABC为等边三角形,D、E分别为BC、AC边上的两动点(与点A、B、C不重合),且总使CD = AE,AD与BE相交于点F.
(1)求证:AD = BE;
(2)求∠BFD的度数.
【答案】(1)见解析(2)60°.
【解析】
(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA,结合AE=CD,可证明△ABE≌△CAD,从而证得结论;
(2)根据∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.
(1)证明:∵△ABC为等边三角形,
∴∠BAC=∠C=60°,AB=CA.
在△ABE与△CAD中,
,
∴△ABE≌△CAD(SAS).
∴AD=BE.
(2)解:∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
练习册系列答案
相关题目