题目内容
【题目】省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
(1)m= %,这次共抽取 名学生进行调查;并补全条形图;
(2)在这次抽样调查中,采用哪种上学方式的人数最多?
(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
【答案】(1)、26%;50;(2)、公交车;(3)、300名.
【解析】
试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:
(2)、由图可知,采用乘公交车上学的人数最多
(3)、该校骑自行车上学的人数约为:1500×20%=300(名).
答:该校骑自行车上学的学生有300名.
【题目】探索与应用.
(1)先填写下表,通过观察后在回答问题:
①表格中x=;y=;
②从表格中探究a与 的数位的规律,并利用这个规律解决下面两个问题:
已知 =1.8,若 =180,则a= .
已知 =5.036, =15.906,则 = .
a | … | 0.0001 | 0.01 | 1 | 100 | 10000 | … |
… | 0.01 | x | 1 | y | 100 | … |
(2)阅读例题,然后回答问题;
例题:设a、b是有理数,且满足a+ b=3﹣2 ,求a+b的值.
解:由题意得(a﹣3)+(b+2) =0,因为a、b都是有理数,所以a﹣3,b+2也是有理数,由于 是无理数,所以a﹣3=0,b+2=0,所以a=3,b=﹣2,所以a+b=3+(﹣2)=﹣1.
问题:设x、y都是有理数,且满足x2﹣2y+ y=10+3 ,求xy的值.