题目内容
【题目】如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
【答案】(1)k="4," E(4,1);(2)存在要求的点P,坐标为(1,0)或(3,0).
【解析】试题分析:(1)由矩形ABCD中,AB=4,BD=2AD,可得3AD=4,即可求得 AD的长,然后求得点D的坐标,即可求得K的值,继而求得点 E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4-m,由∠APE=90,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.
试题解析:(9分)(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,
又∵OA=3,所以D(,3),∵点D在双曲线上,所以k=×3=4.
∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.
把x=4代入中,得y=1,所以E(4,1).
(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4-m.
∵∠APE=90,∴∠APO+∠EPC=90,又∵∠APO+∠OAP=90, ∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90,∴△AOP∽△PCE,∴,
∴,解得:m=1或m=3.
所以,存在要求的点P,坐标为(1,0)或(3,0).
【题目】下列表格是二次函数y=ax2+bx+c(d≠0)的自变量x与函数y的一些对应值,由此可以判断方程ax2+bx+c=0(a≠0)的一个根在( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | ﹣0.03 | ﹣0.01 | 0.02 | 0.06 |
A.﹣0.01﹣0.02之间
B.0.02﹣0.06之间
C.6.17﹣6.18之间
D.6.18﹣6.19之间