题目内容
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
【答案】(1)图形见解析;(2)P点坐标为(,﹣1).
【解析】
(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
(2)连接A1A2、B1B2,交点即为所求.
(1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
(2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).
练习册系列答案
相关题目