题目内容
【题目】如图,以BC为直径的⊙O交的边AB于E,点D在⊙O上,且DE∥BC,连BD并延长交CA于F,∠CBF=∠A.
(1)求证:CA是⊙O的切线;
(2)若⊙O的半径为2,BD=2BE,则DE长为 (直接写答案).
【答案】(1)证明见解析;(2)
【解析】
(1)连接CE,构造直角,通过平行的性持,圆周角定理等进行角的代换,证明∠A+∠BCA=90°可得出结论;
(2)先证明△BED与△BFA相似,得出BF与BA的比值为 ,再证明△BCF和△ACB相似,且相似比为,再次利用△BED与△BFA相似即可求出结果.
(1)证明:连接CE,
∵DE∥BC,
∴∠BDE=∠CBF,
∵∠CBF=∠A,∠BDE=∠BCE,
∴∠BCE=∠A,
∵BC为⊙O的直径,
∴∠CEB=90°,
∴∠CBA+∠BCE=90°,
∴∠CBA+∠A=90°,
∴∠BCA=90°
∴OC⊥CA,
又∵OC为半径,
∴CA是⊙O的切线.
(2)连接CD,
由(1)知∠BDE=∠A,
∵∠DBE=∠DBE,
∴△BDE∽△BAE,
∴,
由(1)知∠CBF=∠A,
∵∠BCF=∠BCF,
∴△BCF∽△ACB,
∴,
∵BC=4,
∴CF=2,AC=8,AF=AC﹣CF=6,
∵BF==2,
∴AB=4,
∵∠BDC=∠BCF=90°,∠CBF=∠CBF,
∴△BCD∽△BFC,
∴,
∴,
∴BD=,
∵△BDE∽△BAE,
∴,
∴,
∴DE=.
故答案为.
练习册系列答案
相关题目