题目内容
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为_____.
【答案】
【解析】分析:根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,从而可证MN=BM,;再由∠BMN=90°,根据BN2=BM2+MN2即可解决问题.
详解:在△CAD中,∵M、N分别是AC、CD的中点,
∴MN∥AD,MN=AD,
在Rt△ABC中,∵M是AC中点,
∴BM=AC,
∵AC=AD,
∴MN=BM,
∵∠BAD=60°,AC平分∠BAD,
∴∠BAC=∠DAC=30°,
∴BM=AC=AM=MC,
∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,
∵MN∥AD,
∴∠NMC=∠DAC=30°,
∴∠BMN=∠BMC+∠NMC=90°,
∴BN2=BM2+MN2,
∴MN=BM=AC=1,
∴BN=.
故答案为:.
【题目】某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大请将他们的探究过程补充完整。
(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=_________。
(2)上述函数表达式中,自变量x的取值范围是____________;
(3)列表:
x | ... | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | ... |
y | ... | 1.75 | 3 | 3.75 | 4 | 3.75 | 3 | m | ... |
写出m=__________;
(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
(5)结合图象可得:x=_______时,矩形的面积最大: 写出该函数的其它性质(一条即可):_______________________________________.