题目内容
如图,已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.
![]()
(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,且AD=BC,………………1分
∴AF∥EC,
∵BE=DF,
∴AF=EC,
∴四边形AECF是平行四边形.………………3分
(2)解:∵四边形AECF是菱形,
∴AE=EC,
∴∠1=∠2,………………4分
∵∠3=90°-∠2,∠4=90°-∠1,
∴∠3=∠4,
∴AE=BE,………………5分
∴BE=AE=CE=1/2BC=5.………………6分
【解析】(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.
(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长
练习册系列答案
相关题目