题目内容
(2013•宜宾)如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.
分析:要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.
解答:证明:在△ABE和△ACD中,
,
∴△ABE≌△ACD(ASA),
∴BE=CD(全等三角形的对应边相等).
|
∴△ABE≌△ACD(ASA),
∴BE=CD(全等三角形的对应边相等).
点评:此题考查了全等三角形的判定与性质,全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.
练习册系列答案
相关题目