题目内容

【题目】如图,在△ABC中,AB=ACAB的垂直平分线交ABM,交ACN

1)若∠ABC=70°,则∠MNA的度数是__

2)连接NB,若AB=8cmNBC的周长是14cm

BC的长;

在直线MN上是否存在P,使由PBC构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

【答案】50°

【解析】1)根据等腰三角形的性质得出∠ABC=∠ACB=70°,求得∠A=40°,根据线段的垂直平分线的性质得出AN=BN,进而得出∠ABN=∠A=40°,根据三角形的内角和定理可得出∠ANB=100°,根据等腰三角形三线合一就可求得∠MNA=50°

(2)①根据△NBC的周长=BN+CN+BC=AN+NC+BC就可求得.

②根据对称轴的性质,即可判定P就是N点,所以△PBC的周长最小值就是△NBC的周长.

解:(1)∵AB=AC,

∴∠ABC=∠ACB=70°,

∴∠A=40°,

∵MN是AB的垂直平分线,

∴AN=BN,

∴∠ABN=∠A=40°,

∴∠ANB=100°,

∴∠MNA=50°;

故答案为50°.

(2)①∵AN=BN,

∴BN+CN=AN+CN=AC,

∵AB=AC=8cm

∴BN+CN=8cm

∵△NBC的周长是14cm

∴BC=14﹣8=6cm

②∵A、B关于直线MN对称,

∴连接AC与MN的交点即为所求的P点,此时P和N重合,

即△BNC的周长就是△PBC的周长最小值,

∴△PBC的周长最小值为14cm

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网