题目内容
【题目】如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.
(1)当AC的长度为多少时,△AMC和△BOD相似;
(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;
(3)连结BC.当S△AMC=S△BOC时,求AC的长.
【答案】
(1)解:∵∠MCA=∠BDO=Rt∠,
∴△AMC和△BOD中,C与D是对应点,
∴△AMC和△BOD相似时分两种情况:
①当△AMC∽△BOD时, =tan∠EOF=2,
∵MC=4,
∴ =2,
解得AC=8;
②当△AMC∽△OBD时, =tan∠EOF=2,
∵MC=4,
∴ =2,
解得AC=2.
故当AC的长度为2或8时,△AMC和△BOD相似
(2)解:△ABO为直角三角形.理由如下:
∵MC∥BD,
∴△AMC∽△ABD,
∴ ,∠AMC=∠ABD,
∵M为AB中点,
∴C为AD中点,BD=2MC=8.
∵tan∠EOF=2,
∴OD=4,
∴CD=OC﹣OD=8,
∴AC=CD=8.
在△AMC与△BOD中,
,
∴△AMC≌△BOD(SAS),
∴∠CAM=∠DBO,
∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,
∴△ABO为直角三角形
(3)解:连结BC,
设OD=a,则BD=2a.
∵S△AMC=S△BOC,S△AMC= AC MC=2AC,S△BOC= OC BD=12a,
∴2AC=12a,
∴AC=6a.
∵△AMC∽△ABD,
∴ ,即 ,
解得a1=3,a2=﹣ (舍去),
∴AC=6×3=18.
【解析】(1)△AMC和△BOD相似时分两种情况:△AMC∽△BOD和△AMC∽△OBD,再由相似三角形的对应边成比例求出AC的长;
(2)易证△AMC∽△ABD,根据相似三角形的性质和三角形的中位线性质可求出OD=4,CD=8,AC=CD=8,从而得出△AMC≌△BOD,则∠CAM=∠DBO,再由∠ABO=∠ABD+∠DBO=∠AMC+∠CAM可求出∠ABO的度数,进而得出△ABO的形状;
(3)设OD=a,则BD=2a.利用三角形的面积可得AC=6a,再由△AMC∽△ABD,根据相似三角形的对应边成比例可求出a的值,进而得出AC的长.