题目内容

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

【答案】(1)50;(2)16;(3)56(4)见解析

【解析】试题分析:

(1)根据统计图中的信息可知,获得A等的有10人,占抽查总数的20%,由此即可计算出抽查学生的总数;

(2)由(1)中计算结果结合统计图中已知的A、B、D三个等级的人数即可求得C等级的人数,并由此补全条形统计图;

(3)由(1)中求得的被抽查学生的总数及获得D等级的有4人可计算出获得D等级的人数所占的百分比,即可求得800人中可能获得D等级的人数;

(4)设两名男生为A1、A2两名女生为B1、B2,画出树形图分析即可求得所求概率;

试题解析

110÷20%=50(名)

答:本次抽样调查共抽取了50名学生.

250-10-20-4=16(名)

答:测试结果为C等级的学生有16.

图形统计图补充完整如下图所示:

3700×=56(名)

答:估计该中学八年级学生中体能测试结果为D等级的学生有56.

(4)画树状图法:设体能为A等级的两名男生分别为,体能为A等级的两名女生分别为,,画树状图如下:

由树状图可知,共有12 种结果,每种结果出现的可能性相同,而抽取的两人都是男生的结果有两种:(),(,), P(抽取的两人是男生)=.

型】解答
束】
20

【题目】如图,在平面直角坐标系xOy中,直线ABx轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t0).

(1)求直线AB的解析式;

(2)在点POA运动的过程中,求△APQ的面积St之间的函数关系式(不必写出t的取值范围);

(3)在点EBO运动的过程中,完成下面问题:

①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

②当DE经过点O时,请你直接写出t的值.

【答案】(1)直线AB的解析式为;(2)S=﹣t2+t;

(3)四边形QBED能成为直角梯形.①t=②当DE经过点O时,t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得一次函数的解析式;
(2)过点QQFAO于点F.由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得的面积St之间的函数关系式;
(3)①分别从DEQBPQBO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即时,则列方程即可求得t的值.

详解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

设直线AB的解析式为y=kx+b.

.解得

∴直线AB的解析式为

(2)如图1,过点QQFAO于点F.

AQ=OP=tAP=3t.

由△AQF∽△ABO,

(3)四边形QBED能成为直角梯形,

①如图2,DEQB时,

DEPQ

PQQB,四边形QBED是直角梯形.

此时

由△APQ∽△ABO,

解得

如图3,PQBO时,

DEPQ

DEBO,四边形QBED是直角梯形.

此时

由△AQP∽△ABO,

3t=5(3t),

3t=155t

8t=15,

解得

(PA0运动的过程中还有两个,但不合题意舍去).

②当DE经过点O时,

DE垂直平分PQ

EP=EQ=t

由于PQ相同的时间和速度,

AQ=EQ=EP=t

∴∠AEQ=EAQ

∴∠BEQ=EBQ

BQ=EQ

所以

PAO运动时,

过点QQFOBF

EP=6t,

EQ=EP=6t

AQ=tBQ=5t

解得:

∴当DE经过点O, .

练习册系列答案
相关题目

【题目】如图1,在锐角ABC中,ABC=45°,高线AD、BE相交于点F.

(1)判断BF与AC的数量关系并说明理由;

(2)如图2,将ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DEAM时,判断NE与AC的数量关系并说明理由.

【答案】(1)BF=AC,理由见解析;2NE=AC,理由见解析.

【解析】试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=AC.

试题解析:

1BF=AC,理由是:

如图1ADBCBEAC

∴∠ADB=AEF=90°

∵∠ABC=45°

∴△ABD是等腰直角三角形,

AD=BD

∵∠AFE=BFD

∴∠DAC=EBC

ADCBDF中,

∴△ADC≌△BDFAAS),

BF=AC

2NE=AC,理由是:

如图2,由折叠得:MD=DC

DEAM

AE=EC

BEAC

AB=BC

∴∠ABE=CBE

由(1)得:ADC≌△BDF

∵△ADC≌△ADM

∴△BDF≌△ADM

∴∠DBF=MAD

∵∠DBA=BAD=45°

∴∠DBA﹣DBF=BAD﹣MAD

即∠ABE=BAN

∵∠ANE=ABE+BAN=2ABE

NAE=2NAD=2CBE

∴∠ANE=NAE=45°

AE=EN

EN=AC

型】解答
束】
17

【题目】已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网