题目内容

【题目】如图,在平面直角坐标系中,直线与双曲线交于两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1;(2)点的坐标是;(3;(4.其中正确的结论有  

A. 1B. 2C. 3D. 4

【答案】C

【解析】

1)把A4a)代入,求得A为(42),然后代入求得k=8

2)联立方程,解方程组即可求得B-4-2);
3)根据同底等高的三角形相等,得出SABC=SABF
4)根据SABF=SAOF+SBOF列出,解得

解:(1直线经过点

在双曲线上,

,故正确;

2)解

的坐标是,故正确;

3将直线向上平移个单位,交双曲线于点,交轴于点

是同底等高,

,故错误;

4

解得,故正确;

故选:

练习册系列答案
相关题目

【题目】数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?

问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.

探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?

第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.

第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.

第三类:选正六边形.(仿照上述方法,写出探究过程及结论)

探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?

第四类:选正三角形和正方形

在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程

60x+90y360

整理,得2x+3y12

我们可以找到唯一组适合方程的正整数解为.

镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌

第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)

第六类:选正方形和正六边形,(不写探究过程,只写出结论)

探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?

第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网