题目内容
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.
(1)求抛物线的解析式;
(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.
①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.
②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)抛物线的解析式为y=;(2)①存在t=或t=,使得△ADC与△PQA相似;②当t=时,△APQ与△CAQ的面积之和最大.
【解析】(1)应用待定系数法求解析式
(2)①分别用t表示△ADC、△PQA各边,应用分类讨论相似三角形比例式,求t值;
②分别用t表示△APQ与△CAQ的面积之和,讨论最大值.
(1)∵OA=1,OB=4,
∴A(1,0),B(﹣4,0),
设抛物线的解析式为y=a(x+4)(x﹣1),
∵点C(0,﹣)在抛物线上,
∴﹣,
解得a=.
∴抛物线的解析式为y=.
(2)存在t,使得△ADC与△PQA相似.
理由:①在Rt△AOC中,OA=1,OC=,
则tan∠ACO=,
∵tan∠OAD=,
∴∠OAD=∠ACO,
∵直线l的解析式为y=,
∴D(0,﹣),
∵点C(0,﹣),
∴CD=,
由AC2=OC2+OA2,得AC=,
在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t,
由∠PAQ=∠ACD,要使△ADC与△PQA相似,
只需或,
则有或,
解得t1=,t2=,
∵t1<2.5,t2<2.5,
∴存在t=或t=,使得△ADC与△PQA相似;
②存在t,使得△APQ与△CAQ的面积之和最大,
理由:作PF⊥AQ于点F,CN⊥AQ于N,
在△APF中,PF=APsin∠PAF=,
在△AOD中,由AD2=OD2+OA2,得AD=,
在△ADC中,由S△ADC= ,
∴CN=,
∴S△AQP+S△AQC= ,
∴当t=时,△APQ与△CAQ的面积之和最大.