题目内容
【题目】如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.
(1)若AB=4,求△DNF的周长及sin∠DAF的值;
(2)求证:2ADNF=DEDM.
【答案】
(1)解:∵点E、F分别是BC、CD的中点,
∴EC=DF= ×4=2,
由勾股定理得,DE= =2 ,
∵点F是CD的中点,点N为DE的中点,
∴DN= DE= ×2 = ,
NF= EC= ×2=1,
∴△DNF的周长=1+ +2=3+ ;
在Rt△ADF中,由勾股定理得,AF= = =2 ,
所以,sin∠DAF= = =
(2)证明:在△ADF和△DCE中,
,
∴△ADF≌△DCE(SAS),
∴AF=DE,∠DAF=∠CDE,
∵∠DAF+∠AFD=90°,
∴∠CDE+∠AFD=90°,
∴AF⊥DE,
∵点N、F分别是DE、CD的中点,
∴NF是△CDE的中位线,
∴DF=EC=2NF,
∵cos∠DAF= ,
cos∠CDE= ,
∴ ,
∴2ADNF=DEDM.
【解析】(1)根据线段中点定义求出EC=DF=2,再利用勾股定理列式求出DE,然后三角形的中位线平行于第三边并且等于第三边的一半求出NF,再求出DN,再根据三角形的周长的定义列式计算即可得解;利用勾股定理列式求出AF,再根据锐角的正弦等于对边比斜边列式计算即可得解;(2)利用“边角边”证明△ADF和△DCE全等,根据全等三角形对应边相等可得AF=DE,全等三角形对应角相等可得∠DAF=∠CDE,再求出AF⊥DE,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得DF=EC=2NF,然后根据∠DAF和∠CDE的余弦列式整理即可得证.
【考点精析】认真审题,首先需要了解正方形的性质(正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形),还要掌握相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方)的相关知识才是答题的关键.